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The mechanics of behavior developed by Killeen (1994) is extended to deal with deprivation and
satiation and with recovery of arousal at the beginning of sessions. The extended theory is validated
against satiation curves and within-session changes in response rates. Anornalies, such as (a) the
positive correlation between magnitude of an incentive and response rates in some contexts and a
negative correlation in other contexts and (b) the greater prominence of incentive effects when
magnitude is varied within the session rather than between sessions, are explained in terms of the
basic interplay of drive and incentive motivation. The models are applied to data from closed econ-
omies in which changes of satiation levels play a key role in determining the changes in behavior.
Relaxation of various assumptions leads to closed-form models for response rates and demand func-
tions in these contexts, ones that show reasonable accord with the data and reinforce arguments for
unit price as a controlling variable. The central role of deprivation level in this treatment distin-
guishes it from economic models. It is argued that traditional experiments should be redesigned to
reveal basic principles, that ecologic experiments should be redesigned to test the applicability of
those principles in more natural contexts, and that behavioral economics should consist of the
applications of these principles to economic contexts, not the adoption of economic models as
alternatives to behavioral analysis.
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This paper compares three approaches to
the prediction of behavior that is under the
control of incentives and supported by moti-
vational states of varying intensity. Behavioral
economics frames behavior as an exchange of
goods, and motivation as the optimization of
the trade-offs required by the constraints of
time and experimental context in order to
obtain the best immediate or delay-discount-
ed package of goods. Ecologics respects the
natural ecology of the subject and rejects the
logic of the marketplace and theoretician for
that of an organism adapted by evolutionary
forces to complex natural environments.
Ecologics frames behavior as nested sets of
systems or action patterns, and motivation as
regulation-the defense of setpoints within
those system states. Both of these approaches
are teleonomic or functional, focusing on fi-
nal causes, on outcomes: The economic or-
ganism behaves so as to optimize packages of
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goods, and the ecologic organism behaves to
minimize deviations from optimal setpoints
in its parameter space. Mechanics focuses on
the efficient rather than the final causes of
behavior, and provides a set of formal caus-
es-a set of mathematical models-that ex-
pands simple assertions of causal agency into
more precise functional relations between
variables. The mechanical organism is not be-
having to optimize anything; incitement
makes it active, satiation decreases its excit-
ability, and co-occurrence of particular re-
sponses with incentives increases the proba-
bility of those responses. The primary goal of
this paper is to develop the mechanics to the
point at which it is applicable to the experi-
mental contexts that are favored by economic
and ecologic theorists.

MECHANICS

A recent monograph (Killeen, 1994) pro-
posed a mechanics of behavior based on
three principles concerning the nature of
arousal, temporal constraint, and coupling
between responding and incentives. The first
principle was that incentives excite respond-
ing, so that arousal level (A) is proportional
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to rate of incitement (R: a will be defined
below):

A= aR. (1)

But there are constraints. There is only so
much time available in which to respond (Kil-
leen's second principle), and for a particular
target response to be differentially excited by
an incentive, it must be paired with that in-
centive; they must coreside in the animal's
short-term memory (the third principle). It is
only when effective contingencies couple an
incentive with a response that the incentive
becomes a reinforcer. These three principles
provided the bases for models of the behavior
generated by various schedules of reinforce-
ment. For instance, the theory predicts re-
sponse rates on interval schedules to be

kR_ R
R+ I/a X'

X, a > 0, (2)

where k is proportional to the maximal at-
tainable response rate, R is the rate of rein-
forcement, a is a key parameter whose mean-
ing will be developed below, and lambda (X)
is the rate of decay ofmemory for a response.
Note that without the subtrahend, this is es-
sentially Herrnstein's hyperbola, which has
been demonstrated to predict response rate
over a wide range of conditions (see, e.g., de
Villiers & Herrnstein, 1976). The subtrahend
comes into play only at very high rates of re-
inforcement (R > 2 per minute), where an
increasing fraction of the incentive bears on
the prior consummatory response, strength-
ening it rather than the instrumental re-
sponse. Because the subtrahend is important
only under very high rates of reinforcement,
it will be set to zero for the rest of this paper,
because this simplifies analysis and incurs
only a small decrease in goodness of fit.

The Specific Activation of Incentives

The parameter a, which I have called the
specific activation, is of greatest concern in
this paper. In Herrnstein's (1974) formula-
tion, Ro = 1/a was treated as the rate of re-
inforcement available from sources other
than those scheduled by the experimenter.
This interpretation has not been supported
by subsequent research (e.g., Bradshaw, Sza-
badi, Ruddle, & Pears, 1983; Dougan &
McSweeney, 1985; McSweeney, 1978). Ac-

cordingly, some investigators (e.g., Bradshaw,
Ruddle, & Szabadi, 1981) have more agnos-
tically called the parameter the half[life con-
stant, because response rate attains half its
maximal value when R equals RB.

In earlier work on incentive motivation,
Killeen, Hanson, and Osborne (1978)
showed that each incentive delivered under
constant conditions will generate a total of a
seconds of behavior. It follows that R incen-
tives will generate the potential for aR sec-
onds of responding, and they called aR the
organism's level of arousal. The particular
form of responding generated by that arousal
depends on the contingencies that determine
just what particular response will occur be-
fore the delivery of the incentive. It is this
coupling of responses to incentives that con-
stitutes reinforcement. When the coupling
approaches its maximum (1.0), as it does on
short ratio schedules, most of the behavior of
the organism is concentrated on the target
response. When the coupling is very weak, as
in schedules of behavior-independent rein-
forcement, behavior is diffuse and drifts to-
ward adjunctive forms. But in all cases, the
total amount of time spent responding is a
function of the arousal level of the organism,
which is a product of the specific activation
of the incentives (a) and the rate of their de-
livery (R). It is these considerations that gave
rise to Equation 1.
We may simplify Equation 2 by dropping

its subtrahend, and we may multiply its nu-
merator and denominator by a to reveal
more clearly the multiplicative interaction be-
tween incentive factors summarized by a, and
rate of incitement, R

kaR
B=

aR+ I (3)

Equation 3 is hyperbolic in aR because of the
nonlinearities introduced by ceilings on re-
sponse rate. When we are operating well be-
low those ceilings, it reduces to the simple
proportional model, the first principle of the
mechanics. Whereas Equation 2 emphasizes
the relation of this model to Herrnstein's hy-
perbola, Equation 3 reminds us of the mul-
tiplicative relation between a and R as they
conjoinfly determine arousal level and re-
sponse rate.

Terminology. It is worth an aside to clarify
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the terminology used throughout this paper.
The above equations were proposed as equi-
librium solutions for when the behavior un-
der study has come to a steady state. In phys-
ics the study of systems at equilibrium is
called statics, analogously, the above equa-
tions are part of a statics of behavior. Much
of the recent research in behavior analysis
concerns such asymptotic behavior. It derives
from a tradition of descriptive behaviorism;
whenever a cumulative record is displayed or
a regression is fit through a scatter of data,
the goal is description. This is a first step to-
ward a more general science: "Galileo was
concerned not with the causes of motion but
instead with its description. The branch of
mechanics he reared is known as kinematics,
it is a mathematically descriptive account of
motion without concern for its causes"
(Frautschi, Olenick, Apostol, & Goodstein,
1986, p. 114). It follows in the Pythagorean
tradition that "approached phenomena in
terms of order and was satisfied to discover
an exact mathematical description" (Westfall,
1971, p. 1). There are many examples of such
a tradition in psychology today, including de-
scriptive statistics, the laws of psychophysics,
and the original matching law.
The study of forces that cause objects to

move is called dynamics, dynamics constitutes
"a theory of the causes of motion" (Frautschi
et al., 1986, p. 114). Behavior is the motion
of organisms, and the study of changes in be-
havior as a function of motivation, learning,
and other causal factors constitutes a dynam-
ics of behavior. Examples in the behavioral
literature are provided by Higa, Wynne, and
Staddon (1991), Staddon (1988), and Myer-
son and Miezin (1980); Marr (1992) provides
an overview. A framework that embraces all
of the above special cases is called a mechanics.
This term does not nowadays refer to hypo-
thetical internal mechanical linkages; such
machinery is the vestige of the Cartesian tra-
dition in which Newton labored when he be-
gan to establish the modern science of me-
chanics. That mechanical tradition sought to
provide causal explanations of phenomena,
although such causes were often narrowly
construed as material causes involving the
motions of particles or aggregations of matter
underlying the phenomena. It was one of
Newton's chief disappointments that he was
never able to provide such a "mechanical"

substrate for forces such as gravity, and he fi-
nally repudiated knowledge of such hypo-
thetical causes in his famous "hypotheses non
fingo," offering instead a precise mathemat-
ical description of the effects of those forces.
His dynamical theory reconciled "the tradi-
tion of mathematical description, represent-
ed by Galileo, with the tradition of mechani-
cal philosophy, represented by Descartes"
(Westfall, 1971, p. 159).
As is the case in physics, in behavior anal-

ysis the term mechanics is something of an at-
avism; but in both cases, it may be interpreted
as an emphasis on the analysis of complex
resultants into their constituent forces, as a
focus on causal rather than statistical expla-
nations, and on mathematical rather than
mechanical linkages between cause and ef-
fect. It is in those senses, ones common to
the behavior-analytic tradition, that it is used
here. It embraces molecular models such as
melioration, but not teleological models such
as those predicated upon optimization. It in-
volves the theoretical constructs of value and
drive. Theoretical constructs are as necessary
for a science of behavior as they are for any
other science (Williams, 1986); this was rec-
ognized by Skinner throughout his career, be-
ginning with his argument for the generic na-
ture of the concepts stimulus and response
(Skinner, 1935), through his defense of drive
as a construct that can make a theory of be-
havior more parsimonious overall (Skinner,
1938), to his final writings. The issue, as Skin-
ner and others (Feigl, 1950; Meehl, 1995)
have stated, is not whether such constructs
are hypothetical, but whether they pay their
way in the cost-benefit ratio of constructs to
predictions. This article requires a loan of the
reader's patience as these constructs are de-
veloped and deployed, in the hope that the
theory will in the end bejudged a worthwhile
contribution to the experimental and theo-
retical analysis of behavior.

Open Versus Closed Economies
One of the key conditions that is assumed

to be constant in Killeen's (1994) mechanics,
but that varies substantially in the real world,
is the value of the incentive to the organism.
This value depends both on the intrinsic
qualities of the incentive-what Hull and his
students denoted by Kand called incentive-mo-
tivation-and the hunger, thirst, or "drive" of
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the organism, which they denoted by D (e.g.,
Hull, 1950; Spence, 1956). Much of the early
research on these factors was an essentially
qualitative analysis of the differential role
they played in motivation. The present con-
cern is the development of a quantitative
analysis, one that proceeds by expanding the
single parameter a (the specific activation of
an incentive) into components akin to K and
D. Here these constructs are developed out
of the already-established statics (Equations 1
through 3) and provide the motivational
"causes" that transform it into a dynamics.

All of the data analyzed under the original
formulation of the mechanics were derived
from animals at high levels of deprivation,
which often requires supplementary feeding
in the home cages. But behavioral economists
have argued that such conditions provide a
restricted, perhaps even anomalous, perspec-
tive on behavior, and that our analysis will
have more ecological validity to the extent
that we permit our subjects to earn their com-
plete daily ration under the constraints of the
schedule we study, in the process often per-
mitting them to approach ad libitum reple-
tion by the end of the (extended) daily ses-
sion. The traditional procedure has been
called an open economy because the subject is
maintained by food and water extrinsic to the
schedule contingencies; the latter arrange-
ment has been called a closed economy. Collier,
Johnson, Hill, and Kaufman (1986) chris-
tened the traditional open-economy proce-
dure the refinement paradigm, "developed in
classic physics, first enunciated for animals by
Thorndike (1911, pp. 25-29) and perfected
by Skinner (1938), Hull (1943), their stu-
dents, and their contemporaries" (Collier et
al., p. 113). Because postsession feeding is
one of the least important distinctions be-
tween open and closed economies, because
description of the procedure as an economy
constitutes a commitment to a particular ex-
planatory framework, and because the refine-
ment paradigm is the ideal context in which
to refine basic principles, their term is uti-
lized throughout this paper.
A number of researchers have adopted the

economic analysis of schedule effects, with
their designs often involving novel schedules
of reinforcement. Hursh (e.g., Hursh, 1984)
has shown that the very type of functions an-
alyzed by Killeen (1994) look quite different
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Fig. 1. A revision of the figure drawn by Hursh
(1980), showing the differences in patterns of response
rates of monkeys under open and closed economies, as
a function of the interreinforcement interval on variable-
interval schedules. The curves are drawn by Equation 8'.
See Hursh (1978) for procedural details and original
data.

under a closed economy. For instance
Hursh's (1980) Figure 4 showed response
rate decreasing slightly as the scheduled rate
of reinforcement decreased in an open econ-
omy, just as we would expect from Equations
2 and 3, but increasing markedly in a closed
economy. Figure 1 shows those data (derived
from Hursh, 1978). This constitutes a serious
threat to behavioral mechanics and to all oth-
er theories that entail the Herrnstein hyper-
bola. Hursh argued that "It is the economic
system which produced the different results"
(1980, p. 223). But just what was it about the
different systems that made the difference?
Hursh's explanation is in terms of elasticity of
demand. "In the closed economy with no sub-
stitutable food outside the session, demand
was inelastic, in the open economy with con-
stant food intake arranged by the experi-
menter, demand was elastic" (Hursh, 1980, p.
233). Elastic goods are those such as luxuries
for which increases in price causes decreases
in willingness to work for them or in the
amount that will be paid for them (demand);
inelastic goods are those such as basic needs
for which moderate increases in cost have lit-
tle marginal effect on demand; customers will
pay what they have to to maintain consump-
tion (Kooros, 1965; Lea, 1978). Elasticity is
measured as the proportional change in de-
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mand that results from a proportional
change in price. For the closed economy, as
the reinforcement rate decreases (moving to
the right on the x axis of Figure 1), price in-
creases (animals get less food per response)
and there is a concomitant increase in re-
sponse rates. The flat functions for the open
economy suggest an elasticity near unity, as
should be the case: If you can get it after the
session for free, you shouldn't work harder
for it when prices go up. (The proper x axis
for the economic analysis is unit price-re-
sponses per unit of reinforcer-which is high-
ly correlated with mean time between rein-
forcers at most response rates. At low
response rates on interval schedules, howev-
er, price is positively correlated with response
rate. Strictly speaking, this latter dependency
makes economic analyses inappropriate for
interval schedules, because "In order to de-
duce the shape of the demand for a consum-
er good, the first assumption one should
make is [that] no individual buyer has any
appreciable influence on the market price;
namely, the price is fixed" Kooros, 1965, pp.
51-52.)

Behavioral economics provides an interest-
ing perspective in a field in which the data
are rich and complicated and the potential
for bridging to another discipline is so clear.
But is it the right perspective? Does respond-
ing constitute a cost-do animals meter key
pecks the way humans do pennies? Do they
anticipate end-of-session feedings? Just why
should the rates under the closed economy
generally be lower than those under the open
economy, if in the latter case animals can
bank on a postsession feeding? Why should
rates fall to near zero for the variable-interval
(VI) 20-s schedule in the closed economy in
contrast with the open economy? How are
these effects predicted from economic theo-
ry? Elasticity might describe, but cannot ex-
plain, these differences; nor have economists
explained why elasticity itself should vary con-
tinuously with price, as is usually the case for
behavioral data. A simpler hypothesis can ex-
plain the differences in the data under these
two experimental paradigms: In the closed
economy the subjects are closer to satiation
more of the time, especially at small VI values;
subjects from the open economy, being hun-
grier, respond at a higher rate. To formalize
this treatment requires an expansion of the

mechanics to handle deprivation and incen-
tive motivation.

HUNGER

Where does deprivation level enter the ba-
sic principles of reinforcement? The primary
effect will be on the specific activation asso-
ciated with an incentive: The value of a in
Equation 1 will decrease with satiation. The
level of incitement that a small banana pellet
will provide to a satiated monkey will be less
than that provided to a hungry one.' The
closer an animal is to its natural rate of intake
under ad libitum feeding, the smaller a
should be. Similarly, the incitement from a
small banana pellet will be less than that from
a large banana pellet. Therefore, the param-
eter a must be expanded from a single free
parameter to a product of the organism's
hunger and the value of the incentive in al-
leviating hunger. To be concrete, let us think
of the hunger drive in the simplest terms:
Consider the metabolic system to be a vessel
that stores a finite amount of food and util-
izes it at a constant metabolic rate M. The
context permits the organism to acquire new
food of average magnitude m at the rate of R
(see the Appendix for a review of the con-
stants and their dimensions). Depending on
the recent history of depletion and repletion,
there will be more or less food in store. To
be precise, we would need to deal with a cas-
cade of storage devices (i.e., the mouth, the
stomach, the bloodstream, the adipose tis-
sue), each with their own release rates; dif-
ferent types of food will affect these differ-
ently. Bulky food may fill the mouth and
stomach but do little to alleviate deep hun-
ger, whereas sugars may immediately release
stored glucose into the bloodstream while
leaving the stomach relatively empty. We will
not confront those details here: Think in
terms of the stomach (or crop) and some
standard food such as those typically used as
reinforcers. In this simplest instantiation, the
deficit is the emptiness of the stomach.

' Secondary motivational effects on all the parameters
are likely. For instance, a weakly motivated organism
might take longer to complete a response, lowering the
ceilings on response rate (see, e.g., McDowell & Wood,
1984, and Equation 3' below). But this paper focuses on
the primary motivational effects, whose locus of action is
on the parameter a.
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Changes in the deficit will depend on the bal-
ance between the rates of emptying the stom-
ach (depletion) and of filling it (repletion)
over time. In the case in which both the input
rate (mR) and the output rate (M) are con-
stant over the interval t, the deficit at time t,
dt, is

dt= do + (M-mR)t, (4)

where do denotes the initial deprivation level.

Boundary Conditions
It is worth a concrete discussion here of

two of the variables (do and M) in Equation
4, because they recur throughout the paper
and will often be set to fixed values. In an
open economy, the experimenter might de-
prive the organism for several days, but no
matter how deprived, animals can eat only
until their stomachs are full. In these cases
the initial deficit do takes the value of the
maximum capacity of the stomach. For rats,
the typical maximum meal size is about 4 g
(see, e.g.,Johnson & Collier, 1989, 1991). For
animals such as pigeons with a crop or mon-
keys with cheek pouches, a meal can be much
more substantial. This is also the case for rats
when their environment permits them to
hoard. T. Reese and Hogenson (1962)
showed that for deprivation times over 24 hr,
pigeons will consume approximately 10% of
their free-feeding weights. Zeigler, Green,
and Lehrer (1971) found that in the course
of an hour, 10 White Carneaux that had been
deprived to 80% of their ad libitum weights
consumed 40 g of mixed grain on the aver-
age; this is consistent with Reese and Hogen-
son's estimate of do.

In closed economies in which initial depri-
vation times are minimal, do will be small and
may usually be set to zero. Under these con-
ditions deprivation will grow with time since
the last meal (t) according to Equation 4 un-
til hunger motivation exceeds the threshold,
at which point another meal will be initiated.

Pigeons of typical size require between 0.5
and 1 g/hr to maintain their weights between
80% and 100% of ad libitum, and the re-
quirements for rats also fall within that range.
These values for M are sufficiently smaller
than the rates of repletion in typical (open
economy) experiments that one may set M =
0, as is done in all of the subsequent analyses
in this paper.

Drive Versus Deficit
What is the relation between the hunger

drive h, and deficit d,? The simplest model
makes hunger proportional to deficit, h, =
yd, so that from Equation 4

ht= y[do + (M - mR)t]. (5)
Alternate models of this basic process are pos-
sible. Equation 5 is similar to a regulatory
model proposed by Ettinger and Staddon
(1983). Townsend (1992) explored a dynam-
ic motivational system that, in place of Equa-
tion 5, had motivation grow as a function of
the deviation between the current motiva-
tional level and the ideal, with a threshold
that motivation must exceed before respond-
ing will be initiated. Solution of such a model
leads to motivation that grows exponentially
with time, rather than linearly:

ht= ey[do+(M-mR)t] -
. (6)

With the threshold equal to 1.0, motivation
will be zero when deprivation level is zero. In
the case of 0 > 1, it requires more than the
minimal amount of deprivation for the sub-
ject to begin responding. In the case of 0 <
1, the subject will continue responding even
when satiated (Morgan, 1974), either because
conditioning has created some behavioral
momentum or because the drive is also main-
tained by other deprivations (e.g., dilute su-
crose solutions will assuage both hunger and
thirst). In the linear model, threshold effects
are absorbed into the deficit parameters.
The exponential model has some face va-

lidity, in that introspection suggests that the
exigency of hunger seems to grow more
steeply than linear with deprivation time. It is
consistent with control-systems analyses of
motivational systems (e.g., McFarland, 1971;
Toates, 1980). Serious students of these issues
will find an excellent review of the current
state of research on appetite and its neural
and behavioral bases in Legg and Booth
(1994).
Yet another model of hunger would have it

grow sigmoidally with deprivation, approach-
ing a ceiling at the highest levels of depriva-
tion. Such a model is outlined in the Appen-
dix; its application did not improve any of the
analyses, and so it is not pursued here.

Equations 5 and 6 show that when an ani-
mal becomes satiated (when the initial deficit
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is replaced and depletion is just balanced by
repletion), h, falls below threshold, driving
motivation to zero and carrying response rate
along with it. Food-motivated behavior ceases,
preventing overindulgence that would drive
hunger levels to a negative value. Contingen-
cies of reinforcement that require consump-
tion for access to other incentives, however,
could drive h, to a negative value. In this case,
response rates are depressed below free base
rates (Allison, 1981, 1993), requiring external
force or the passage of time to overcome that
inhibition.

Aggregating Over a Session
For the linear model, the average drive lev-

el over the course of a session of durationt.,.
is given by Equation 5, with t = t,,./2 (see
the Appendix). Under the exponential drive
model, the situation is more complicated. If
session duration is constant, the average drive
level is given by Equation 6, with t = t', some
undefined fraction of t,,,.. In employing the
exponential model, one may set t' to some
arbitrary value (e.g., t,eJ/2) and let the re-
maining parameters adjust themselves to that
constraint.

Economic Translation
In economic parlance, do is the debt, mR is

the wage, and M is the cost of doing business.
On ratio schedules the rate of reinforcement
R is an inverse function of the ratio size (n),
or price, and n/rm is the unit price. M, the
rate of utilization of food by a free-feeding
organism, is the coordinate of the ideal, or
bliss point, along the food consumption axis.
It could be separated into fixed cost or over-
head (basal metabolic rate), and production
cost (response effort). Basal metabolic rate
constitutes the major cost of foraging and
thus constitutes a significant "sunk cost" to
any endeavor: Once standing, it doesn't re-
quire much more energy to do anything.
(This distinction implies flat optima for mod-
els of foraging that maximize calories gained
per calories of effort expended; more precise
feedback is provided by optimizing calories
gained over time expended.)
The parameter y represents the cost of de-

viations from the ideal, and e provides one
index of the elasticity of demand. If -y is large
(and thus e > 1), the animal is very sensitive
to deviations from the ideal rate of repletion,

and demand is said to be inelastic. If -y is
small (and thus e 1), then changes in price
elicit only minimal behavioral adjustments;
demand for the commodity approaches unit
elasticity. If -y is negative (and thus e < 1),
animals will work less for a commodity as its
price increases, and demand is said to be elas-
tic. This occurs in the presence of substitutes,
as when food is available for responding on
other levers (Johnson & Collier, 1987). This
interpretation of elasticity differs from that of
the economists, because theirs refers to de-
mand as a function of price but does not take
deprivation levels into account. Economic
models are designed to map population ef-
fects, not biological ones. Saturation of the
market is treated with different models than
elasticity. "Decreasing marginal utility of
goods" captures some of the idea of satiation,
but is usually construed without reference to
the current deficit.
The present approach predicts that the

economists' measure of elasticity will change
with price, because on ratio schedules the
rate of reinforcement, R, which appears in
the right sides of Equations 5 and 6, equals
m/n, the reciprocal of unit price. Motivation
varies with price because that affects the rate
of repletion. Indeed, Hursh, Raslear, Bau-
man, and Black (1989) found elasticity to
vary as a linear function of unit price. But this
is not because -y has changed; our measure
of elasticity, , may stay constant over changes
in motivation because we have moved the
controlling variables into our independent
variables (Equations 5 and 6), and therefore
do not need to let our theoretical constants
vary with our independent variables.

Ecologic Translation
M is the setpoint repletion rate that ani-

mals will defend. Equation 4 provides a mea-
sure of deviation from that setpoint. Defense
of the setpoint is equivalent to animals' at-
tempting to minimize that deviation, that is,
set the derivative to zero. The force of this
equilibration is given by y. In control-systems
parlance, y represents the regulatory gain, or
restoring force. Many different arrangements
of contingencies will generate many different
constellations of behavior, all of which have
only one thing in common and predictable;
the absolute value of Equation 4 will be min-
imized. This approach therefore is like the
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Hamiltonian approach to mechanics, in
which all of the laws of mechanics may be
derived from minimization of a single differ-
ential equation called the action. It is the core
assumption of regulatory approaches to be-
havioral economics such as Allison's (1983).
The current approach also recognizes the
boundary conditions to this minimization:
The changes in motivation will not be re-
vealed in behavior until they cross a threshold
for action, and they will not continue once
the capacity of the organism is saturated.

An Application of the Basic Model
to Satiation Curves
How does drive level interact with magni-

tude or quality of the incentive? The simplest
assumption is multiplicative: Absent either
drive or a viable incentive, the specific acti-
vation a must be zero. We may call the incen-
tive variable v. Then a, = vh,. The value of an
incentive will not generally be proportional
to its magnitude, although a linear relation
may be an adequate approximation if the
range of variation is small.

In accord with the above analysis, for the
linear drive model we expand the specific ac-
tivation to

at= vh1= vy [do + (M- mR)t], (7)
where (M - mR) is the balance between de-
pletion and repletion, and its multiplication
by t gives the cumulative effects of that bal-
ance. This equation has replaced a as a single
free parameter with a three-parameter mod-
el: value v, the initial deficit d, and the de-
pletion rate M. (For the linear model the de-
viation-cost parameter y is redundant with
the value parameter v and may be absorbed
into it or simply set to 1.0.) Equation 7 may
then be inserted into Equation 3 to predict
response rates of animals under interval
schedules when deprivation levels vary.

Fischer and Fantino (1968) provided the
data around which the linear model was de-
veloped. They deprived pigeons to 80% of
their ad libitum weights, and trained them to
respond on chained VI 45 VI 45 schedules,
extending the sessions until responding
ceased. The reinforcer consisted of access to
a hopper of mixed grain for 2, 6, 10, or 14 s.
Figure 2 shows the resulting satiation curves
in the terminal links of the chain and in the
initial links. Although the data themselves
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Fig. 2. Response rates under chained schedules for
pigeons receiving different durations of access to the
hopper during extended sessions (Fischer & Fantino,
1968). The data represented by filled symbols come from
the terminal link, and those by open symbols from the
initial link. The curves are drawn by Equations 3 and 7,
and represent performance for 2-s (inverted triangles),
6-s (triangles), 10-s (squares), and 14-s (circles) access to
food.

show rather unexciting monotonic decreases
with number of feedings, the model provides
a rational fit to them. The first step was to
estimate the amount of food obtained under
the different conditions, because amount
consumed is not proportional to hopper du-
ration. Fortunately, Epstein (1981) published
a useful graph giving the amount consumed
from a hopper of the design used in this
study. For these hopper durations the regres-
sion gave the amounts as 0.13, 0.28, 0.35, and
0.36 g of mixed grain.2 I used those numbers
as estimates of m.
The pigeons' weights were reduced to 80%

of their free-feeding weights. To optimize the
goodness of fit, I set the parameter k in Equa-
tion 3 to 200 responses per minute for the
terminal link and 64 responses per minute
for the initial link. The initial deprivation do
took a value of 57 g. The value parameter v
was 1.5 s per reinforcement. The exponential
drive model provides a comparable fit to
these data. Given the necessary approxima-
tions, the fit of the model to the data is per-

2 For Lehigh Valley feeders the number of grams eaten
approximates a linear function of hopper duration, with
a slope of 0.06 g/s and an intercept of 0.2 g (Epstein,
1985). Pigeons feeding ad libitum are less efficient, with
typical eating episodes lasting 7 s, during which 0.33 g
are consumed (Henderson, Fort, Rashotte, & Hender-
son, 1992).
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haps acceptable, although responding in the
initial links decreased at a faster rate than
predicted, especially for the 14-s hopper con-

dition. (Lendenmann, Myers, & Fantino,
1982, found a similar hypersensitivity in the
initial links in response to variations in du-
ration of reinforcement, as did Nevin, Man-
dell, & Yarensky, 1981, in response to satia-
tion.) It may be that in all cases decreased
motivation has its primary effects on pausing,
and once an animal has begun to respond, it
continues until reinforcement. If this is the
case, then pausing will occur primarily in the
initial links, with animals responding through-
out the terminal links. Segmenting responding
will thus put the greatest leverage of motivation
on the earliest segments. (See Williams, Ploog,
& Bell, 1995, for further analyses of these
chain-schedule effects.)
We can write the above models in a more

condensed form. Set the metabolic rate M to
0, the magnitude of the incentive m to 1, and
let the gain parameter y be absorbed into vr,
then write Equation 3 as

kR
R + 1/[v(do- Rt)] (8)

This equation reiterates the above descrip-
tions, but also provides quantitative predic-
tions: Because of satiation effects, response

rate is a quadratic function of reinforcement
rate. Under conditions of large initial deficit
(do) relative to repletion (Rt), the parenthet-
ical expression is essentially constant and can

be absorbed by v, which returns to us our sim-
ple Equation 3 (or 3', below). The Herrnstein
hyperbola is thus valid primarily for sessions
of short duration or low rate of reinforce-
ment, where the initial deficit outweighs the
cumulative repletion. But satiation effects
grow with t, and become dominant later in a

session.
If one is interested in estimating the pa-

rameters in Herrnstein's hyperbola, then it is
better to use data from early in a session in
which repletion (Rt) is low relative to initial
deficit (d), or from short sessions, so that the
denominator is relatively constant. Better yet,
use Equation 8 at the cost of one additional
parameter (do) and predict the complete
function.
Note that the addend 1/ [v(d - Rt)] in the

denominator was interpreted by Herrnstein
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Fig. 3. Within-session satiation effects shown for gen-

eral activity as measured by a stabilimeter, and for lever
pressing. The data are averaged over two sessions in
which 4 rats were given two 45-mg pellets for the first
response 30 s after the previous reinforcement (Fl 30).
The curves are drawn by Equation 8'.

as Ro, the value of reinforcement for other
(nontarget) responses. He and Loveland pre-

dicted that when animals were not deprived
of the primary reinforcer, these other implicit
reinforcers should seem to grow in relative
value, thus increasing the value of R0 (Herrn-
stein & Loveland, 1972). Their data showed
this to be the case; however, our interpreta-
tion is more straightforward: When animals
are not greatly deprived, do will by definition
be small, and thus I/[v(do - Rt)] (their R1)
will be correspondingly large.
The exponential-drive model is necessary

for some of the data on satiation. In that case,
Equation 8 may be rewritten as

kR
BR=

R + 11/(vht)' (8')

with drive level h, an exponential function of
deficit (Equation 6) rather than a linear func-
tion (Equation 5). In an unpublished exper-
iment, Lewis Bizo and I delivered two 45-mg
pellets to rats immediately after a lever press
on a fixed-interval (FI) 30-s schedule. Gen-
eral activity was concurrently measured with
a stabilimeter. Figure 3 shows the decline in
general activity and lever pressing as a func-
tion of the number of trials. Equation 8' drew
both curves. The motivational parameters (-y
= 0.3 g-I and d4 = 4 g) were the same for
both responses, whereas the remaining pa-
rameters were underconstrained by the data.
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The lever-press data are flatter because ceil-
ings on response rate compress the top end
of the function. The key point is that Equa-
tion 8, which predicts a linear or concave-
down decrease in responding, could not have
fit the concave-up time course of satiation as
measured by general activity.

Equation 8' also drew the curves through
the data in Figure 1. In both economies do
took the value of 140 reinforcers and k was
5,500 responses per hour; for the open econ-
omy, -y = 0.10, and for the closed economy y
= 0.07. The key difference between the
curves is the degree of repletion permitted
within the session. For the closed economy
the session duration was 6,000 s, so that t,e/
2 is 3,000 s, and the average session deficit
(the coefficient of -y in Equation 6) is 140 -
R X 3,000. The fixed duration of the closed
economy permitted differential satiation as a
function of rate of reinforcement (R). For
the open economy the session ended after
180 reinforcements, so t,^,/2 is 90/R s, and
the average session deficit is 140 - R X 90/
R3 that is, a constant 50 g. Terminating ses-
sions after a fixed number of reinforcers, or
in general keeping session duration propor-
tional to interreinforcement interval (1IR),
confers a constant average level of motiva-
tion. This is the key difference between the
experimental paradigms; it is "the economic
system which produced the different results"
shown in Figure 1. It did so by letting the
animals differentially satiate in one case but
not in the other.
The amount of food consumed in these

and the Fischer and Fantino (1968) sessions
was two to five times the amount consumed
in a typical session. Is there evidence for the
decrease in responding during operant ses-
sions of more typical duration? Thanks to
McSweeney and her colleagues, there is now
ample evidence of within-session satiation ef-
fects (see McSweeney & Roll, 1993, for a re-
view). But her data also show within-session
warm-up effects, so we must digress to a
model of those.

WARM-UP
Some of the first evidence for within-ses-

sion effects from McSweeney's laboratory
came from a study conducted to test the ef-
fects of postsession feeding on rats that were
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Fig. 4. Data from McSweeney et al. (1990), showing
within-session warm-up and satiation effects in rats. The
curve is drawn by Equation 3, with Equation 7 repre-
senting the satiation effects and Equation 9 the warm-up
effects.

required to press a lever for Noyes pellets or,
in a different condition, to press a key for
sweetened condensed milk (McSweeney, Hat-
field, & Allen, 1990). Although no effects of
postsession feeding were found, a remarkable
pattern of rate changes within the session was
discovered (see Figure 4). Response rates in-
creased through the first 20 min of the ses-
sion and decreased thereafter, and the pat-
tern was virtually identical for the two
responses and reinforcers.
The decrease in rates may be attributed to

satiation of the kind seen in the previous fig-
ures. To what do we attribute the increase in
rates? Killeen and his colleagues (Killeen, in
press; Killeen et al., 1978) have described sim-
ilar increases in rates when animals are first
introduced to a schedule of periodic rein-
forcement, and attributed them to the cu-
mulation of arousal. Such warm-up plays a
large role in behavior maintained by aversive
stimuli and a lesser but still measurable role
in behavior maintained by relief from hun-
ger. Introduction to the chamber itself be-
comes a conditioned reinforcer and there-
fore a conditioned exciter. If there were no
loss of this arousal between sessions, eventu-
ally each session would begin with rates at
their asymptotic level. But the animals calm
down between sessions. For the present pur-
poses, assume this between-sessions loss is
complete (see Killeen, in press, for a more
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general treatment); then arousal should
crue as

A = aR( -e-0t),

ac-

(9)
where a is the rate of the decay of arousal,
usually taking a value around 6 min-' (Kil-
leen, in press; Killeen et al., 1978), and t is
the time into the session. As t grows large, this
reduces to A = aR. This should look familiar:
It is Equation 1 (the first principle of the me-

chanics) and a key component of Equation 3.
Note that Equation 9 predicts the time course

of warm-up to be independent of the rate of
reinforcement; R merely sets the asymptote.
To account for the data of McSweeney et

al. (1990), we replace a in Equation 9 (a mod-
el ofwarm-up) with its expansion by Equation
7 (a model of satiation effects) and insert this
in place of aR in Equation 3 (a model of ceil-
ings on response rates). We may fix do and M
at their standard values of 4 g and 0 g/s.
Then solving for scale parameter k = 7 re-

sponses per second, value parameter v = 11.5
s per reinforcement, and decay rate a = 1/9
minutes, minimizes the sum of squares devi-
ation from the data. Figure 4 shows the pre-
dictions with the linear hunger model (Equa-
tion 7) with these parameter values; the
exponential hunger model provides an equiv-
alent fit to the data, as it does to those from
the next study.
A recent experiment of McSweeney and

Johnson (1994) reinforces this interpretation
of the bitonicity being due to warm-up and
satiation. In this study the authors reinforced
pigeons' pecking on a VI 60-s schedule with
5 s access to mixed grain. After 50 min they
were removed from the chamber and then
returned after 3, 10, or 30 min. Our inter-
pretation of the ascending limb as being due
to warm-up entails that there should also be
a warm-up when the subjects are reintro-
duced to the chamber. If pigeons are de-
tained within chamber, we expect a similar
but less pronounced warm-up effect. For lon-
ger durations of interruption, there should
also be a slight increase in hunger motiva-
tion. Figure 5 shows the data from Mc-
Sweeney andJohnson's first experiment, with
the curves showing response rates in 5-min
bins before and after the intermissions, av-

eraged over subjects and durations of inter-
mission. I set k = 240 responses per minute
and do = 22 g; the latter less than typical, but
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Fig. 5. Data from McSweeney and Johnson (1994),
showing within-session warm-up and satiation effects. The
pigeons were removed from the chamber for periods of
3 to 30 min and then were reintroduced to it. The data
are averaged over subjects and durations of intermission;
the curves are drawn by Equations 3, 7, and 9.

these were small birds maintained at 85% and
given 5-s feeder access per meal. The time
constant for warm-up was 1/a = 6.5 min, and
value of v was 0.15 s per reinforcement. In
their second experiment the birds were not
removed from the chamber, and the postin-
termission warm-up was reduced.

In another study, McSweeney (1992) varied
rates of reinforcement for lever pressing and
measured rats' response rates throughout the
session. As expected, the decreases in rates
during the last half of the session were great-
est under the highest rates of reinforcement,
where satiation occurs most quickly. The
functions look similar to those shown in Fig-
ures 4 and 5, and the above model provides
an excellent fit to them. McSweeney also plot-
ted the data using rate of reinforcement as

the x axis for data from different portions of
the session-first 5 min, the third 5 min, the
9th min, and the 12th min. Although the
small database entails irregularity in the data,
Figure 6 makes an important point: The
shape of the Herrnstein hyperbola depends
on which portion of the session the data are
collected from. In particular, the decrease in
response rates at the highest rate of reinforce-
ment in the latter part of the session is not
predicted by Herrnstein's model. A decrease
in responding at very high rates is predicted
by Equation 2, but for reasons other than sa-

tiation, and that equation cannot predict the
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Fig. 6. Data from McSweeney (1992), showing response rate as a function of rate of reinforcement, with 5-min
segments of the session as the parameter. The curves are drawn by Equations 3, 7, and 9.

observed within-session changes that are due
to satiation (the use of Equation 2 in concert
with the satiation and warm-up models does
in general provide a slighfly better fit to the
data, as one would expect). In fitting the
present model, I give the initial deficit and
metabolic rate their standard assignments: do
= 4 g, M = 0. The remaining parameters
were assigned values that minimized the sum
of squares deviation between theory and data,
and the curves were drawn through the data
shown in Figure 6: 1/a = 10 min, v = 11.5 s

per reinforcement, and k = 72 responses per
minute. Equation 8 provides an almost-equiv-
alent fit, but overpredicts the rate in the first
panel because it does not allow for warm-up.

Figure 6 provides a striking picture of the
impact that such within-session satiation can

have on our overall models of behavior. The
top left panel shows response rates from the

first 5 min of each schedule, displaying the
form that Catania and Reynolds (1968) made
famous and that Herrnstein made eponymic.
But as the session progresses, the form
changes: At all rates of reinforcement greater
than or equal to one per minute, response
rates dropped, and under a VI 15-s schedule
they dropped precipitously.

Effects of session duration and satiation
similar to those shown above were found by
Dougan, Kuh, and Vink (1993) and Osborne
(1977). Satiation and warm-up effects can be
substantial, and the mechanics of behavior
provides a framework within which to derive
models of them. Both the presentation of in-
centives and their removal often affect ani-
mals only after a lag; thus, we have warm-up
effects when sessions start, cool-down or ex-

tinction effects when incentives cease, and re-

sponding through satiation in well-practiced
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subjects. All may be assimilated in mechanis-
tic models of behavior. The final issue that
must be addressed before mechanics can be-
gin to stand as an alternative to economic
and ecologic analyses is the relation between
the amount of an incentive and its value.

MAGNITUDE OF INCENTIVES

Whereas animals typically choose larger
amounts of food over smaller amounts (see,
e.g., Bonem & Crossman, 1988; Collier, John-
son, & Morgan, 1992; Killeen, Cate, & Trung,
1993), response rates often change little or
not at all as a function of the magnitude of
the incentive. Why should this be? In part,
the answer depends on the fact that the re-
inforcing value of an incentive is not propor-
tional to its size. In the case in which mag-
nitude is manipulated by varying duration of
the incentive, the reasons for this are obvious:
The second, third, and nth instants of con-
sumption are not contiguous with the re-
sponse that brought them about; they are
separated from it by n - 1 prior instants of
consumption (Killeen, 1985) that block their
effectiveness. The last instants of a long-du-
ration reward constitute a delayed reward.
Those later instants of consumption increas-
ingly reinforce not the prior operant re-
sponses but rather the immediately prior con-
summatory responses. Assume that each of
the instants of consummatory activity inter-
polated between a response and the last in-
stant of consummatory activity will block that
latter's effectiveness by a constant proportion,
v. Then it follows that the effectiveness of an
incentive should increase as an exponential
integral function of its duration:

Vm = V (1 - e-vm), (10)

where vm expands the value of an incentive
from a constant v to a function of its duration
or magnitude (m); v, is the value of an arbi-
trarily long duration of that incentive, and v
is the rate of discounting the incentive as a
function of its duration. Value (Vm) refers to
the psychological/behavioral magnitude of
an incentive whose physical magnitude (m)
may be measured in grams, seconds, or mil-
ligrams per kilogram. Incentive motivation re-
fers to the evaluative or instigating effective-
ness of the incentive that depends on its value

in the context, as represented by equations
such as Equation 8.
Equation 10 embodies the maxim of "mar-

ginally decreasing utility" of incentives (as a
function of their duration, not, as often used
in economic parlance, as a function of num-
ber of reinforcers). If v is small, the relation
is approximately proportional; if v is large,
increasing duration adds very little value. Kil-
leen (1985) found that Equation 10 with v
between 0.25 and 0.75 s-I fit many of the
choice data he reviewed. For the representa-
tive value of v = 1/2, the value of 3 s of hop-
per access has attained 78% of the maximum
possible (v<,O). Studies that manipulate longer
durations are operating within a very restrict-
ed range.

This model of the change in value with
changes in the duration of an incentive may
be combined with Equations 7 and 8 to pre-
dict performance when the duration of an in-
centive is varied. When the value of an incen-
tive is manipulated by changing its quality
rather than by changing its duration, some
utility function other than Equation 10 (e.g.,
a power function or a logarithmic function)
may be more appropriate. When, for in-
stance, a drug level or sucrose concentration
is manipulated, a plausible model is vm = nv,
and then

at= mv-y[do+ (M- mR)t]. (11)
Whereas larger incentives are marginally

stronger reinforcers, they also decrease the
motivation to work by satiating animals more
quickly. These effects will tend to cancel, de-
pending on the range of durations studied
and the value of the deficit the animal is at-
tempting to satisfy. If initial deficit do is large
or repletion time t is short or the rate of re-
pletion mR is small, the satiation effects will
be buffered by do and net incentive effects
(increasing response rates with increasing
magnitude) will be found. Conversely, if do is
small and repletion is moderate or large, as
is typical of closed economies, the satiation
effect will dominate, and response rates will
decrease as a function of magnitude. The de-
pendence of the sign of the correlation be-
tween magnitude and response rate-positive
in the realm of small incentives, negative in
the realm in which satiation effects domi-
nate-is shown in a study by Collier and My-
ers (1961), who found positive covariation of
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response rates with volume for dilute and in-
frequent sucrose concentrations and negative
covariation for frequent high concentrations.
The authors spoke in' terms of momentary sa-
tiation, which is exactly how we have been
speaking about repletion here. More partic-
ularly, we can take the derivative of Equation
11 with respect to m and set it to zero to find
the magnitude of m at which the correlation
will go from positive to negative. The turn-
over point is

m*=1 + do R
M

(12)

Of the variables under experimental con-
trol, increases in do will extend the range of
m over which a positive correlation-an in-
centive effect-is found; increases in session
duration and rate of reinforcement (t and R)
will move the turnover point to the left, leav-
ing more of the range to show a negative cor-
relation-a satiation effect. Of course, large
values for do and relatively small values for
session duration are typical of traditional ex-
perimental designs, in which incentive effects
should thus be the rule; small values for do
and relatively large values for session dura-
tion are typical of closed economies, in which
satiation effects should thus be the rule.

Within-Session Effects Versus
Between-Session Effects

Choice behavior shows greater control by
magnitude of reinforcement than does sin-
gle-operant responding. The present frame-
work explains this result the following way:
The satiation effects are shared by both op-
erants in a choice situation, leaving the in-
centive effects to act differentially, unbuffer-
ed by satiation. The same is true for response
rates in multiple schedules, in which satiation
effects should generalize when component
durations are not too long, leaving incentive
effects the opportunity for differential effec-
tiveness-an effect known as contrast (Nevin,
1994). It remains to be seen just how much
of the complex literature on behavioral con-
trast can be understood in these terms. To
the extent that this mechanics applies, con-
trast should be greatest when there is least
buffering by do; that is, toward the end of ses-
sions, in longer sessions, and in closed econ-
omies. It should be greater for animals that

take longer to satiate because they have crops
or other caches (e.g., pigeons), compared to
those that don't (e.g., rats). Contrast should
be greater for incentives for which there is
little satiation (e.g., electrical stimulation of
the brain, nonnutritive sweeteners) and lower
for bulky but low-valued incentives.
Analogous predictions hold for postrein-

forcement pausing (see Perone & Courtney,
1992). (a) Unsignaled within-session manip-
ulations should reflect primarily satiation ef-
fects (longer pauses after larger reinforcers),
because the differential magnitudes provide
differential momentary satiation effects im-
mediately after their delivery, whereas the
forthcoming incentive value is averaged over
all durations of incentives. (b) For between-
sessions changes, the two component effects
will tend to cancel. (c) Signaled within-ses-
sion changes should reflect primarily incen-
tive effects, because the forthcoming incen-
tive is particular to performance under its
stimulus control, whereas the satiation effects
will tend to be averaged across magnitudes.

Unlike response rates, there is no ceiling
effect on pause lengths, which may make
them more sensitive to changing motivational
levels than rates; most of the effects predicted
by the present theory may reflect differences
in the amount of time spent pausing or en-
gaging in other responses, rather than con-
tinuous changes in response rates over a sub-
stantial range. In any case, the present theory
predicts that all of these effects should be
strongly affected by deprivation level, ex-
plains why, and stipulates the contexts in
which satiation versus incentive effects will be
found.

ECONOMICS
The central concern of traditional econom-

ics is the exchange of goods for other goods,
including labor, and that is also the concern
of behavioral economics. Experimental sub-
jects exchange behavior for goods, or strike
balances between several goods in return for
their behavior. Without this requirement for
exchange of tangible items, there would be
underconstraint in theories and chaos in the
marketplace: If all that mattered to hungry
subjects were maximization of reinforcement,
all animals would always respond at their
maximum rates under most contingencies.
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Economic behavioral theory was introduced
in part because its framework of sacrificing
one thing to get another provides a "ration-
al" basis for the modulation of response rates
we see on many schedules of reinforcement.
When return rates are very low, animals
should respond with little enthusiasm be-
cause doing so is not worth their while com-
pared to other things they could purchase
with their labor; when the return rates are
very high, they should respond with little en-
thusiasm because they are close to satiation.
The greatest strength of economic analyses

lies in the development of models that frame
the trade-offs between different reinforcers,
clarify what constitutes a "bundle" of goods,
and explain the interactions between similar
reinforcers that permit one to be substituted
for another. The application of economic
models to behavior controlled by a single
source of reinforcement is more problematic,
because these models are forced to introduce
other hypothetical goods involved in the
trade-offs, in a way not dissimilar to Herrn-
stein's introduction of Ro as a source of com-
peting reinforcement. Rachlin and associates
(Rachlin, 1989; Rachlin, Battalio, Kagel, &
Green, 1981; Rachlin & Burkhard, 1978;
Rachlin, Kagel, & Battalio, 1980) treat leisure
as a good, so that depending on the experi-
menter's constraints, the animals must make
trade-offs between the leisure given up by re-
sponding and the material reinforcers that re-
sponding provides. Those trade-offs are mo-
tivated by the subject's preference for an
optimal package of goods under constraints
of time and schedule. Staddon (1979) as-
sumes that optimal rates exist for all activities,
and that animals are motivated to approach
that locus in behavioral space that minimizes
a weighted sum of squares of the deviations
of each from its optimal rate (or that mini-
mizes some other cost function) given the
constraints of time and schedule. Experimen-
tal contingencies usually require operant re-
sponding at a higher-than-optimal rate, so
that such responding functions as a cost,
much as it does for Rachlin and associates. In
Staddon's multidimensional behavior space,
the coordinates of the ideals of all relevant
dimensions define a bliss point, and because
every other point is in some way inferior, vari-
ations in an organism's behavior that carry it
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Fig. 7. Data from Kelsey and Allison (1976) plotted
by Hanson and Timberlake (1983), along with the curves

resulting from their model and from Staddon's (1979).
Reprinted with permission. Superimposed is the parabola
drawn by Equation 16.

away from this global minimum are selected
against.
Hanson and Timberlake (1983) focus on

regulation, provide a mathematical model of
the equilibrium approach of Timberlake and
Allison (1974), and derive as special cases

Staddon's (1979) and Allison's (1976, 1981,
1993) optimality accounts. At the heart of the
model are the coupled differential equations
known as the Lotka-Volterra system. As an ex-

ample of its application, the asymmetric
curve is drawn through the data from Kelsey
and Allison (1976), shown in Figure 7. The
dashed line is given by Staddon's (1979) min-
imum distance model. In fitting their five-pa-
rameter model, Hanson and Timberlake not-
ed that these functions "quickly exhaust the
degrees of freedom inherent in, for example,
six or seven data points" (p. 272). Thus, the
most we can hope for in comparing theory
to data is a consistency check, a hurdle that
is necessary for the theories to clear, but
whose clearance is not sufficient grounds for
us to accept them. Whether or not we accept
these theories seems to depend on whether
we find their assumptions congenial to our

intuitions about behavior, and whether they
make novel predictions. There have been few
novel predictions that I am aware of. How-
ever, they do provide new constructs and in-
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dices, such as elasticity of demand, that pro-
vide alternative perspectives on behavior.

Elasticity is an index, "a number derived
from a formula, used to characterize a set of
data" (American Heritage Dictionary, 1992). In-
dices are useful because a single number can

often characterize some crucial aspect of a

phenomenon (e.g., the index of refraction of
optical materials, the consumer price index,
etc.). Lea (1978) drew demand curves as the
amount of an item purchased as a function
of the price of the item. When the axes are

logarithmic, the slope of these curves equals
their coefficients of elasticity (see, e.g., Koo-

ros, 1965). In his Figures 3 and 4, Lea drew
idealized demand functions as straight lines
of different slopes, with items such as coffee
and bread showing the least decrease in con-

sumption as price is increased (demand for
them is inelastic, as we would expect), and
items such as herring and cakes showing the
greatest decrease. Here a single number-the
coefficient of elasticity-effectively character-
izes a set of data. However, in his Figures 1

and 5, as is the general case, real data from
closed economies are concave: Elasticity in-
creases continuously with the price of the
commodity (see Figure 8). This result is
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about as satisfying as would be the discovery
of an "inverse square law" for force as a func-
tion of distance, but in a world in which the
exponent varies continuously with distance
and takes the value of -2 only at one partic-
ular distance. Elasticity should not itself be so

elastic!
The demand curve was designed for anal-

ysis of decisions by populations, where in-
creasing proportions of the population may

be influenced to purchase a commodity, per-

haps just once, as its price decreases. It was

not designed to analyze the repeated pur-

chases by individuals, because such data will
be greatly affected by decreasing marginal
utility as magnitude increases, and by satia-
tion as rate of consumption increases. As not-
ed by Staddon (1982), reinforcement rate ap-

pears on both axes (R vs. n/R) of the demand
curve, so that independent and dependent
variables are intrinsically correlated. Such
functions provide good stimulus control of vi-
sual analysis only when they are linear and
differences in slope may be directly com-

pared. Looking for second-order effects such
as differences in degree of curvature is made
unnecessarily difficult by the tactical choice
of those coordinates.

Behavioral economics has useful things to
tell us about substitutability and complemen-
tarity (see, e.g., Green & Freed, 1993; Lea &
Roper, 1977), issues not addressed in this ar-

ticle. But when applied to single response-
reinforcer paradigms, that approach is less
useful (see, e.g., the commentaries on Rach-
lin et al., 1981). There are too many free vari-
ables to be tied down; motivational changes
affect the parameters while they are being
collected, and the core notion that animals
prefer not to respond above a relatively low
bliss-point rate is false, as shown by Staddon
and Simmelhag (1971) for pigeons and by
numerous other investigators for numerous

other organisms whose uneconomical adjunc-
tive behavior often overwhelms their contin-
gent behavior. The paired baseline distribu-
tions of responding used in regulation
models have been shown not to predict bliss
points, and the ratio of instrumental to con-

tingent responding is not the controlling vari-
able it has been purported to be (Tierney,
Smith, & Gannon, 1987).
The economic approach does not respect

molecular contingencies of reinforcement

(Allison, Buxton, & Moore, 1987), and there-
fore is prima facie unable to predict the huge
differences in responding that can be ob-
tained with brief delays of reinforcement, and
is unable even to predict the profound dif-
ferences that depend on the order of ex-
change of goods-that is, the differences in
forward versus backward conditioning. Be-
havioral economics therefore does not con-
stitute a general theory of behavior. It offers
some tools for the comparison of different
incentives and their effects on behavior when
satiation and reinforcement contingencies
are controlled. It opens the door to a behav-
ioral analysis of consumer choice, about
which a mature behavioral economics will
have much to say.

ECOLOGICS
Collier andJohnson and associates (Collier

et al., 1986, 1992; Johnson & Collier, 1989,
1991) have required rats to work for food un-
der a variety of conditions, usually ones that
respect the animal's normal feeding routine,
letting the animals complete meals uninter-
rupted, and often extending the sessions to
permit animals to acquire most of their food
within the experimental context (i.e., closed
economies). This extends the analysis of be-
havior to a larger time scale. But, although
perhaps more natural, it makes it more dif-
ficult for the theorist to analyze the behavior
that is obtained from these contexts. The rea-
son for this is that under these conditions,
rates of reinforcement are closely tied to the
patterns and rates of the animal's behavior-
rate of reinforcement, a key controlling vari-
able, is no longer an independent variable.
To understand this, we must digress to ex-
amine how an animal's behavior affects its
rate of reinforcement.

Schedule Feedback Functions
Killeen (1994) derived a schedule feedback

function (SFF) that predicts the rate of rein-
forcement on constant probability VI sched-
ules, given a constant rate of responding of B
responses per minute, as

R= B(1- e-R'IB), B> 0,
where R' is the programmed rate of rein-
forcement. Over most of its range, this may
be approximated by its Taylor expansion:
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BR'
R= .X (13)B + R'

This is also the form of the SFF suggested by
Staddon (1977) and Staddon and Motheral
(1978). It is also the equation derived if one
assumes that reinforcers are set up and re-
sponses are emitted randomly and in se-
quence with rate constants of R' and B (i.e.,
it is the mean of series-latency devices such as
two-step generalized gamma distributions).
When response rates are high, reinforcement
rate approximately equals the scheduled rate
if (divide numerator and denominator by B
and then let B go to infinity); when they are
very low, reinforcement rate approximately
equals the response rate B. Equation 13 is ac-
curate only in the ideal case of continuous
engagement of organism and schedule. If an
organism takes extended timeouts from re-
sponding, obtained rates of reinforcement
are lower (Baum, 1992; Nevin & Baum,
1980). The SFF for ratio schedules is simply
R = B/n, where n is the ratio requirement.
Such SFFs are not of interest because we

believe that animals are sensitive to how the
marginal rates of reinforcement are affected
by responding under different SFFs. (This
fundamental assumption of all molar opti-
mality models has been effectively discredited
by Ettinger, Reid, & Staddon, 1987.) Rather,
SFFs are important because they determine
the rate of reinforcement (a key controlling
variable in Equations 1 through 3) in the con-
text of an interactive organism. Closed sys-
tems such as those employed by Collier and
associates are closed-loop systems, with the
feedback from response rates on reinforce-
ment rates closing the loop through the SFF.
To predict behavior under such conditions,
we insert the appropriate feedback function
into the motivation equations, and insert
these into Equation 3. For ratio schedules,
the solution generates the basic equation of
prediction (Killeen, 1994, Equation 8). For
interval schedules, it yields equations propor-
tional to Equation 3, but with a slightly lower
asymptote:

(k - I/a)aR'
aR' + 1

a 2 1/k. (3 ')

No problem: Still the same old hyperbola!
Equation 3' shows one of the reasons that a

hyperbolic model is so robust: When specific

activation (a) is large, Equation 3' is equiva-
lent to Equation 3. But even at low activation
when obtained reinforcement rate falls sub-
stantially below its scheduled value, perfor-
mance remains a hyperbolic function of
scheduled reinforcement rates, merely find-
ing a lower asymptote (k - l/a).

Unfortunately, the complete equations of
motion for organisms contain a double feed-
back loop. Not only does rate of responding
affect rate of reinforcement (that Equation 3'
compensates for), but rate of reinforcement
determines the satiation of the organism,
which affects the value of specific activation
a. The obtained rate of reinforcement ap-
pears in Equation 7, which is an expansion of
a. If we insert Equation 13 into that and at-
tempt to solve it, we get stuck. The result is a
quadratic equation with no simple solutions.
(Equation 8 is quadratic in the rate of rein-
forcement, but because that is an indepen-
dent variable, it caused no mischief. Here the
equations are quadratic in the dependent
variable, response rate.) Quadratic equations
are, of course, nonlinear; the nonlinearity is
introduced by having behavior be a function
of a variable (motivation) that itself is a func-
tion of behavior (which reduces motivation
by repleting the animals). Now it becomes
impossible to write equations with all the
knowns on one side and the unknowns on
the other. There is no simple, complete so-
lution to this impasse.

Coping with Nonlinearity
When confronted with a difficult nonlin-

earity such as this, we have several options:
Experimentally opening the loop. We may re-

duce the nonlinearity by making the constant
terms large relative to the varying terms. This
means large initial deficits (do) relative to re-
pletion rates (mR); Equations 8 and 8' show
that this is achieved with some combination
of highly deprived organisms, small and in-
frequent meals, and short sessions: All of the
betes noires that Collier and other economic
theorists have repeatedly excoriated.

It is hard to dispute their point that these
conditions of the refinement experiment
(i.e., the standard procedures) are nonrep-
resentative extrema under which the animals
can display little of the range of the natural
repertoire of their normal instrumental and
consummatory patterns. Objects falling in a
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vacuum display little of the range of the nat-
ural repertoire of leaves falling in an autumn
wind. It is through refinement experiments
that physicists, chemists, and behaviorists
have come to understand the variables of
which their subject is a function. We can have
simple laws, such as Equation 3, or we can
have more precise but complicated ones,
such as those obtained by inserting Equation
11 into it; to the degree that we want preci-
sion, we must forgo its complement, simplic-
ity (Killeen, 1993).
By opening the loop between controlled and

controlling variables, the refinement experi-
ment permits us to explore alternate ways of
formulating models to cover the phenomena
of interest, to estimate the values of the models'
basic parameters, and to evaluate the adequacy
of one model against alternate models (e.g.,
the linear vs. exponential drive models).

Surgically opening the loop. Another way of
controlling the feedback loop is to open the
esophagus so that the consumed food does
not fill the gut. This is sham feeding, a kind
of continuous binge and purge. It provided
Pavlov (1955) and Miller (1971) with an ex-
perimental preparation that effectively ad-
dressed certain questions about the locus of
satiety signals. But, because it insults the in-
tegrity of the organism-environment match
in a different way, it is less useful in address-
ing the questions we pursue concerning the
behavior of a whole organism.

Postdictions. When basic refinement exper-
iments are completed, we would like a way of
then applying the results to more complex
experimental arrangements that are not so
theoretically felicitous. A means to accom-
plish this is to give up scheduled reinforce-
ment rate as an independent variable, and in-
use the measured rates of reinforcement in our
equations of prediction. The measured rates of
instrumental and contingent behavior are the
variables compared by economic theorists such
as Staddon (1979) and Rachlin et al. (1981).
This is a useful tactic in that it demonstrates
consistency of the models with data, and in
many cases is the best that can be achieved. But
settling for correlations between dependent
variables is less than an optimal solution to the
problem; in giving the prime instrument of ex-
perimental analysis-control-to the subject by
making the paradigm more "ecologically val-
id," we are consequently forced to abandon the

prime goal of experimental analysis, giving up
prediction to settle for postdiction.

Numerical solutions. Another option is to fall
back on iterative numerical solutions of the
equations, which is possible even with the un-
known on both sides. This option will be use-
ful in some situations, but is not further ex-
plored here.

Simplifications. There are different aspects
of the complete equations that we can ignore
for the sake of a closed-form solution to the
laws of behavior. For instance, in moving
from Equation 2 to Equation 3, we sacrificed
the correction for blocking of reinforcement
by previous reinforcements, incurring some
inaccuracy at reinforcement rates above two
per minute. Let us next table Killeen's (1994)
second principle of reinforcement by ignor-
ing the temporal constraints on responding,
and fall back on his simplest first principle of
arousal, Equation 1. Then Equation 3 simpli-
fies to an expansion of that first and most
basic principle:

B = aR = vy[do+ (M - mR)t]R. (14)
This equation is a parabola. It describes re-
sponding at time t in a session as a function
of rate of reinforcement. It also describes the
average responding in a session when t is set
equal to half the session duration (t,ss/2; see
the Appendix). Because we have ignored ceil-
ings on response rate, we expect the actual
data to be slightly less peaked than a parab-
ola, being squashed into more of an ellipsoid
form. Equation 14 provides a good fit to the
data analyzed by Staddon (1979) using his
minimum distance model. However, some of
those data were collected in open economies,
and their downturn at low ratio values is
probably due more to the impoverished cou-
pling of reinforcers to responses, which I
have analyzed at length (Killeen, 1994).
On ratio schedules requiring n responses

per reinforcement, we may substitute the ra-
tio schedule feedback function B/n for R At
last, we may write an equation that can be
solved for B! Its solution is

m, v', > 0, (15)

whereM is the average depletion,M = do/ t +
M, m is the magnitude of the incentive, and
v' is proportional to the incentive value of the
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reinforcer, v (see Equation A5 in the Appen-
dix).

Equation 15 is a parabola that increases to
a maximum at n = vM/2 and decreases to-
ward zero both as n approaches zero (satia-
tion effects) and as n becomes very large
(straining the ratio, which occurs as n -*
v'M, exactly twice the point at which the max-
imum occurs). Equation 15 provides a good
fit to data such as those shown in Figure 10
of Collier et al. (1986). It may be preferable
to Equation 14, because it predicts respond-
ing in terms of an independent variable, the
size of the ratio schedule n, rather than in
terms of a dependent variable, rate of rein-
forcement.
To calculate the total number of responses

(b) in a session of duration t8s, multiply
through by tsess:

m, v' > 0. (16)

Equation 16 provides a reasonable fit to the
data in Figure 7 with m and t,s,, fixed at 1, v'
set to 1.2 X 10-3, and M = 5,450 licks per
session. For the exponential drive model
(Equation A6 in the Appendix), the parabola
is skewed to the right and looks very much
like Hanson and Timberlake's (1993) curve.

It is a short step to write the equation for
the demand function, the number of rein-
forcers earned (r) as a function of ratio re-

quirement, by dividing Equation 16 by the
number of responses required per reinforce-
ment (n). If we take the session as the unit
of time, so that we can set tsess equal to 1, then

M 1/n\
Ir =-- ,I_m vm

m, v' > 0. (17)

This is a model demand function: Consump-
tion r is a linear function of unit price n/m,
with a slope of -1/v' and an intercept of
M/m. It is drawn as the bold line in the log-
arithmic coordinates of Figure 8 with m = 1,
M = 200, and v' = 3. It has approximately the
same shape as many of those empirical de-
mand curves; it is simple, and does not make
the obviously erroneous economic assertion
that there is a thing such as elasticity that can

be assigned to a good and that is indepen-
dent of its price (i.e., it does not assert that
the data fall on straight lines in double-log
coordinates). The exponential drive model

provides more flexible demand curves, which
are necessary to fit some of these data.
DeGrandpre, Bickel, Hughes, Layng, and

Badger (1993) have systematically reviewed
data such as those shown in Figures 7 and 8,
many involving drug reinforcers. They ar-
gued for the use of unit price (n/rm) as the
proper metric of the x axis (as did Timber-
lake & Peden, 1987, and Hursh, 1980). Unit
price plays a key role in Equations 15 through
17 as well. The slope of the demand curve
predicted by Equation 17 depends not on the
variables n and m, but only on their ratio.3
There is an important difference between

the analysis of DeGrandpre et al. (1993) and
the present one. DeGrandpre et al. plotted
their data on logarithmic coordinates. A pa-
rabola in logarithmic coordinates is not par-
abolic in linear coordinates, but is skewed to
the right. Conversely, Equations 15 and 16
are skewed to the left when plotted on a log-
arithmic x axis. The exponential drive model
is less skewed than the linear drive model.
Whether the present models can provide as
good a fit to the range of available data as
have those of Hursh et al. (1989) and De-
Grandpre et al. (1993) remains to be seen.

CONCLUSION

Mechanistic explanations have fallen into
disrepute, in part because good ones are hard
to come by, and in part because they elicit
images of gears and pulleys-poor models for
the processes that behaviorists seek to under-
stand. Goal seeking, regulation, optimization,
or, in general, teleological (Rachlin, 1992)
and teleonomic (H. Reese, 1994) approaches
seem more modern. Economics, the science
of final causes (Rachlin, 1994), studies the
goals around which behavior is organized. As
Rachlin has noted in his scholarly and insight-
ful analyses, we must have some sense of the
purposes of behavior before we can under-
stand what an act is about. All four of Aris-
totle's causes are necessary for a complete ac-
count of behavior: the functional goals and
reinforcers (final causes), effective stimuli
(efficient causes), underlying physiology (ma-

3For very small values of m, v will covary with m; for
simplicity in these analyses I have assumed that v has
topped out, or at least that m is not experimentally varied
over the lower end of its range.
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terial causes), and precise metaphors and
models (formal causes). Insofar as we con-
ceive of operant behavior as being under the
control of its consequences, understanding
the final causes of that behavior-both the
more proximate causes (ontogenetic, histo-
ries of reinforcement) and the ultimate caus-
es (phylogenetic, selection pressures)-takes
first priority. But that doesn't mean that it
must take all our efforts; identification of fi-
nal causes is largely a qualitative endeavor,
and may proceed quickly (we may discover
that one of the causes of birds' singing is de-
fense of their territory) but working out the
machinery that permits the attainment of
such goals remains a substantial project of
analysis. There is much to be said for a me-
chanics, a science of formal causes, as the sec-
ond and most detailed part of the scientific
endeavor, to guide us in that analysis.
The development of simple models based

on naturalistic observations and laboratory
experiments leads us to a clearer understand-
ing of the variables of which behavior is a
function; that is, to a clearer understanding
of its causes. The "essential feature of the
Newtonian style is to start out with a set of
assumed physical entities and physical con-
ditions that are simpler than those of nature,
and which can be transferred from the world
of physical nature to the domain of mathe-
matics. ... The rules or proportions derived
mathematically may be ... compared and
contrasted with the data of experiment and
observation" (Cohen, 1990, pp. 37-38); that
is, refinement experiments. This leads to
modifications of the model system and, in
turn, of the experimental design, and around
again, with these cycles "leading to systems of
greater and greater complexity and to an in-
creased vraisemblance of nature" (Cohen,
1990, p. 38); that is, ecological validity. Math-
ematics was Newton's tool for the discovery
of verez cause, true causes: "Specification of
those causes was not a precondition for the
construction of model systems, but rather a
product of it" (Cohen, 1990, p. 29). And
mathematics, even the relatively trivial math-
ematics in this paper, provides an invaluable
formal structure for our metaphorical mod-
els: "It was the extension of Newton's intel-
lectual powers by mathematics and not mere-
ly some kind of physical or philosophical
insight that enabled him to find the meaning

of each of Kepler's laws" (Cohen, 1990, p.
31). Mathematics puts a fine point on the
dull pencil of metaphor.
The present mechanics provides a relative-

ly parsimonious quantitative account of many
of the data. It also introduces the construct
of satiation, a concept that is in accord with
our understanding of nature and is overdue
for formal recognition in our analyses. Me-
chanics generates a bridge to ecologic and
economic analyses through the explicit utili-
zation of the concepts of ideal rate of reple-
tion or reinforcement (M, which provides
one coordinate of the multidimensional ide-
al, the bliss point), the cost of deviations from
it (-y), the decreasing marginal utility of re-
inforcers (Equations 10 through 12), and a
role for unit price as an independent variable
(Equations 15 through 17). It is also consis-
tent with the changes in response rate that
are found within a single session (Equation
8; see, e.g., Killeen, 1991; McSweeney, 1992).
Futhermore, it leads to a biologically based
treatment of hunger that provides a dynamic
approach to the steady state assumed by eco-
nomic models. Unlike the ecologic and reg-
ulatory approaches, mechanics does not in-
voke defense of a setpoint as a fundamental
force, but introduces that defense implicitly
in equations that make deprivation a key fac-
tor in motivation (Equations 5 through 7). It
is not so much that animals defend a set-
point, as that deviation from a setpoint in-
creases the reinforcing value of events that,
as nature usually has it, reduces that devia-
tion. Finally, in Figures 7 and 8 it provides
alternatives to economic analyses that are par-
simonious of parameters, derive from simple
versions of the basic principles of reinforce-
ment, and provide interpretable parameters
and testable predictions (Equations 15
through 17 and A5 through A7).

Ecologics calls our attention to the rich in-
teractive environments in which animals have
evolved and that have shaped their responses
to metabolic challenge. Its experimental re-
sults may be charted with accuracy, but be-
cause it is a dynamic, path-dependent, non-
linear enterprise, those results can seldom be
predicted from principles. Like the meanders
of a river that are consistent with simple and
precise models, the paths of unchanneled be-
havior may come to be seen as being consis-
tent with models such as those presented
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here, even while the particular courses of riv-
er and beast may never be predictable from
their principles. Prediction and control are
engineering ideals, not scientific ones. It is
the purpose of refinement experiments to es-
tablish principles; in more ecologically valid
experiments our goal is to understand, and
understanding is nothing other than recog-
nition of consistency with established princi-
ples.

Like ecologics, economics provides inspi-
ration to search for the ends around which
behavior is organized-its final causes-and
this is wise. It provides an approach to un-
derstanding the trade-offs animals make be-
tween alternate packages of goods, an impor-
tant and underrepresented area of research.
But it also seduces us into using the analytic
framework of economists, and this is folly.
Economics is not only the science of final
causes; it is also "the dismal science." Its com-
plexities and routine failures to predict be-
havior from economic principles are
legendary. An economic behaviorism that
borrows its constructs, rather than its goals,
takes the worst of it. Let us first identify the
proximate and ultimate causes of behavior in
the ecological context in which those final
causes have provenance. But then let us seek
the true causes of behavior through the de-
velopment of a mechanistic theory-a sci-
ence of formal causes-based on principled
experimentation, that may guide us in the de-
velopment of an "enlightened science" of be-
havioral economics.
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APPENDIX

Constants and Dimensions
Table 1 lists the symbols and their interpre-

tations. Lower-case letters are used for all vari-
ables except rate variables, which are written
in capitals. Greek letters are used for con-
stants and parameters. The second column
lists the constituent dimensions, not the
units. For example, A is the number of sec-
onds of responding per second; these cancel
to make it a "dimensionless" variable. b and
r refer to number of responses and reinforc-
ers; because counting involves an absolute
scale, the units for both are "counts"; but be-
cause they are counting different things, they
have different dimensions.

Session Averages
To calculate average response rates during

a session, one should write the complete
model predicting response rates and inte-
grate it over the session duration. This is be-
cause with finite ceilings on response rate,
even the most extreme deprivation can only
elevate response rates slightly closer to their
ceiling. It is for this reason that the linear and
exponential drive models provide equally
good fits to many of the operant conditioning
data: The differences between the drive level
predicted by those models are greatest at
high deprivations, but that is where response
rates are near their ceilings and thus least re-
sponsive to changes in drive levels. (It is also
for this reason that sigmoidal functions be-
tween deprivation and drive do not provide a
measurable improvement in fit to the data.)
Unfortunately, integration of the complete
models yields ungainly or insoluble forms. It
is therefore a worthwhile simplification to
compute the average drive and arousal levels
over the course of a session, and use these to
predict average response rates.

The linear modeL For the linear model hun-
ger level is given by Equation 5 in the text.
The average hunger over a session of dura-
tiontsess is the integral of that function with
respect to time divided by tsess:

Table 1

Sym- Dimen-
bol sions Meaning

A 1 Arousal level; the amount of respond-
ing elicited by a schedule of incentives
in the absence of competition from
other responses

R r/s Rate of reinforcement (obtained)
B b/s Rate of responding; arousal level cor-

rected for response duration and ceil-
ings on response rate

M g/s Metabolic rate; assumed constant and
often set to zero

R' r/s Rate of reinforcement (scheduled)
a s/r Specific activation: the number of sec-

onds of responding that are elicited by
a single incentive, which depends on
drive and incentive factors

k b/s Asymptotic response rate on interval
schedules

d g Deficit resulting from a depletion/re-
pletion imbalance over time

h 1 Hunger, a linear or exponential func-
tion of deficit

m gir Magnitude of an incentive, here mea-
sured in grams per reinforcer

t s Time
v s/r Value of an incentive, which depends

on its nature and magnitude
n b/r Number of responses required to com-

plete a ratio schedule
b b Number of responses
r r Number of reinforcers
X r/b Lambda, the rate of decay of short-

term memory; does not play an impor-
tant role in the present development

'y l/g Gamma, the gain or restoring force
that translates deficit into drive

0 1 Theta, the threshold level of motiva-
tion for responding

ai 1/s Alpha, the rate of warm-up
v r/g Nu, the rate of discounting an incen-

tive as a function of its magnitude; its
dimensions depend on the indepen-
dent variable and the particular dis-
count model (Equations 10 or 11)

8 s/b Delta, the minimum interresponse
time

hsess = y[do + (M- mR)tse. /2]. (Al)
For short sessions (t,,. small), hunger is de-
termined by the initial deficit d,, but as ses-

sion duration increases, hunger changes
linearly with it. For extended sessions in

which t" is large, hunger is determined pri-
marily by the balance between ongoing met-
abolic depletion and repletion, M-mR

The exponential modeL Calculating the aver-
age hunger during a session of durationte,.
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for the exponential model (Equation 6)
yields a more complicated expression than is
the case for the linear model:

= y(M- mR) te(I - ey(M -0.

But the integral may be simplified using a
power-series expansion. If we retain only the
first two terms of that expansion, it yields a
prediction of hunger level that depends only
on the initial conditions and the constant of
integration:

hsess % e-Y - 0.

Because session durationt,,,. has disappeared,
hunger depends only on initial deprivation
level. This is the implicit assumption of most
traditional open-economy research, which is
unconcerned about changes in hunger dur-
ing the course of a session.

If we include the first three terms of the
expansion, we get:

hsess [1 + y(M - mR)t,es,/2]edo - 0.
Because y and d, may be treated as free pa-
rameters, this is equivalent to the linear mod-
el, Equation Al. Therefore, the linear model
is a special case of this exponential model.
This approximation is best when y is very
small; that is, in the case of a unit elastic de-
mand. Adding a fourth term reintroduces the
nonlinearity as [y(M - mR) ts,)2/3!. It is only
at this point that the models become substan-
tively different; unfortunately, it is also at this
point that the approximation becomes as
cumbersome as the exact form.
As an alternate tactic to achieve a simpler

average we may invoke the mean value theo-
rem: When we integrate a function between
two points on the x axis, there is some un-
specified value of x between those points at
which the function will equal the average
over that range. In the present case, for some
t' between 0 and ts,

hsess = eY[dO+(M-mR)t'] - 0. (A2)

This can finally be simplified to:

hsess = ey'(M mR) - 0. (A3)

where M is a measure of the average deple-
tion over the course of a session of duration
ts,ss,M= d0/t' + M, and -y' is proportional to
the cost of deviations (-y' = yt'). This is the

simplest statement of the basic exponential
model for average drive level during a ses-
sion. Equation A3 may be directly evaluated
as long as session duration (which would af-
fect the implicit t') is not varied.

Average arousal leveL We may calculate the
average arousal level throughout a session of
duration t,,.. It is the integral of Equation 9
divided by t,s:

Asess= aR[l (1 (te'ess)1 at, tsess > 0.

If session duration is constant, the parenthet-
ical factor can be ignored because it is con-
stant and can be absorbed into a. In like
manner, if there is little loss of arousal be-
tween sessions or session durations are long,
as in closed economies, then (l/at,,,.) is small
and the correction is negligible. Only in the
case of very brief sessions (E < 3/a; typically,
that is, less than 20 min) will warm-up affect
session-average data. In other words, in most
cases little is usually fost by ignoring the par-
enthetical factor and setting B = A = aR

The Complete Model for
Closed Economies

The linear modeL In contexts in which ceil-
ing effects on response rate can be ignored,
we may solve the general model for ratio
schedules. From the first principle (Equation
1):

B= aR= vhR/6 (b > 0),

where v a measure of the quality of the in-
centive, h is the drive level, and R is the rate
of reinforcement. 8 is the minimum interre-
sponse time; it appears here to convert the
measure of response strength (response-sec-
onds per second, as given by A in Equation
1) to a measure of discrete responding (B,
responses per second). This is a level of ex-
plicitness not necessary for the body of this
text, but is presented here for completeness.
On ratio schedules the rate of reinforce-

ment is perfectly correlated with the rate of
responding. The schedule feedback function
for ratio schedules is simply R = B/n, where
n is the ratio requirement. Substituting and
rearranging, this becomes:

vh = An. (A4)
This is a fundamental equation of motion for
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behavior. On the left is the force of an incen-
tive-its value times the drive level of the or-
ganism-and on the right is the number of
response-seconds it is required to sustain.
(The complete equation is tvh = 6n, where ;
is a measure of the coupling between incen-
tives and behavior, as determined by the con-
tingencies of reinforcement; see Killeen,
1994. In the present treatment, ; is assumed
to be constant at 1.0.)
Under the linear drive assumption (Equa-

tions 5 or Al),

vy[do + (M- mR)t] = bn.

We again use the ratio SFF (R= B/n) to elim-
inate R, and rearrange to get

B = (M n) (A5)
m vI

whereM =d,/t + M, and v' = veyt/8, with m,
t, 8 > 0. This is Equation 15 in the text. We
may derive the session-average rates by replac-
ing t with t,/2 in the above equations. For
long sessions, d0/t becomes negligible and
may be omitted, especially in the case of
closed economies; conversely, for short ses-
sions and open economies,M may be omitted.
In general, M may be treated as a free param-
eter representing average depletion over the
course of a session (part or all of which may
be offset by the average repletion during the
session, mR).

In experiments that terminate after a fixed
number of reinforcers, the value of t =
will tend to covary with n so that the paren-
thetical term will not change greatly with
changes in the schedule requirement (n) or
unit price (n/m). This is especially true in
closed economies in which the initial deficit
d0/t is small. In that case, response rate will
be a monotonic function of n/m. In experi-
ments that terminate after a fixed amount of
time, response rate will be a quadratic func-
tion of n, as shown by Equation A5. If the
magnitude of the incentive, m, is manipulat-

ed, v will change with it, over at least part of
its range.

The exponential model. In the case of an ex-
ponential relation between deprivation and
hunger, Equations A3 and A4 develop into

v[ey'(X- mR)- 0] = An;
again substitute the ratio schedule feedback
function and rearrange to get

(A6)

with the average depletion: M = d/t' + M,
and m, y', v, t' > 0.

This is the basic equation of prediction for
session averages under the exponential as-
sumption. The parameter -y' is the product of
the restoring force and t'. The curves it gen-
erates are skewed parabolas, which fit many
of the data better than the linear model. The
considerations of the previous section on ses-
sion duration and magnitude manipulations
apply here also.

The general drive model. Under extreme de-
privation, drive no longer increases exponen-
tially with further deprivation, but approach-
es some maximum (i.e., is sigmoidal) and
may even decrease due to inanition (or, in
the case of drugs, due to withdrawal). For
such extreme deprivation conditions, other
functions (e.g., the Weibull distributions)
might be a more appropriate model of the
relation between drive and deprivation. Let
us write the appropriate function of depriva-
tion as h = f[d], and its inverse as d = h];
then Equation A4 becomes:

vf[do + (M- mR)t'] =n,
whose solution is

n 1(V)
Tf-1 (A7)

with, as before,M =d=/t' + M, and m, v, t'
> 0.
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